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ABSTRACT

Knowledge graphs are developed and used in academia and industry to tackle complex challenges in healthcare and
biomedical research. Elsevier’s Healthcare Knowledge Graph (HG) is developed by extracting and integrating medical
knowledge from several heterogeneous sources such as clinical guidelines, medical textbooks, and legacy databases.
The HG platform powers Elsevier’s clinical search and decision support applications that are used by medical pro-
fessionals for education, research, and patient care. Hence, the medical knowledge within HG must be trustworthy,
updated, and manually vetted by medical subject matter experts (SMEs). However, the size and complexity of HG,
as well as the steep learning requirements towards technologies and languages used for knowledge representation and
querying pose several challenges for medical SMEs to curate HG. An academic–industry R&D collaboration explored
the use of the WebProtégé cloud-based knowledge editing system to facilitate medical SMEs and other stakeholders
to interactively explore and collaboratively curate HG. In this case report, we present our findings and experiences
from this collaboration and showcase the approaches and methods developed to handle the size and complexity of HG
within WebProtégé . We also demonstrate the novel features and modifications made to the editing, browsing, and
search interfaces within WebProtégé to improve the usability and user experience of the system for medical SMEs.
While an ideal ‘one size fits all’ knowledge editing system does not exist, establishing the R&D collaboration and de-
ciding on a fixed set of requirements and priorities enabled us to quickly develop stakeholder-focused customizations
within existing processes and WebProtégé .

1 INTRODUCTION

Clinicians always require access to accurate, updated, and trustworthy medical knowledge provided by renowned med-
ical and scientific organizations. This medical knowledge is often disseminated through patient guidelines, medical
textbooks, clinical journals, and synoptic overviews. This requirement manifests at several different stages for a clin-
ician: i) during medical education, when a clinician learns about the different diseases, clinical findings, procedures,
and treatments, ii) during research phases, when a clinician searches reference literature and scientific journals for
novel information pertaining to a given disease or a drug, and iii) during the diagnosis, prognosis, and treatment of
patients at the point of care. Access to trusted and accurate medical literature is also a requirement for other medical
professionals (e.g., nurses, pharmacists) and even for patients who wish to learn about their conditions.

Medical professionals must search and synthesize information on focused, yet esoteric, questions from a broad set
of literature sources (textbooks, guidelines, journal articles) during the course of a busy practice using search en-
gines and information systems (e.g., UpToDate1, Dynamed2, ClinicalKey3, PubMed4). However, medical knowledge



continuously changes, evolves, and shifts as new discoveries are made. Whereas in 2010, medical knowledge was
doubling only every 3.5 years, medical knowledge was projected to double every 73 days in 2020, and this doubling
time is definitely decreasing as we advance in the 21st century with the torrent of new medical knowledge published
daily during the COVID-19 pandemic5, 6. Clinicians need to stay updated on the latest FDA approved drugs, ongoing
clinical trials, and practice guidelines from renowned medical associations. Moreover, the advent of affordable next
generation sequencing technologies has resulted in the need for knowledge personalized to an individual or cohort of
patients. The ever-growing volume of medical evidence, lack of awareness of which resource to search for specialty
questions, skepticism and lack of trust regarding the quality of search results, and insufficient time are often cited as
some of the main barriers to medical learning and point of care literature discovery7, 8.

Knowledge graphs are increasingly being developed and leveraged in academia and industry to tackle complex health-
care and biomedical challenges, such as drug discovery and safety, medical literature search, clinical decision sup-
port, and disease monitoring and management9–14. At Elsevier, we have developed Elsevier’s Healthcare Knowledge
Graph (HG) as a platform that enables enhanced content discovery for medical professionals through search, brows-
ing, recommendation, and decision support services14, 15. Since these services are often used by clinicians and other
professionals for patient care, medical education, and research, the knowledge platform that is used to power these
services must provide actionable, trusted and regularly updated medical knowledge. The curation and maintenance
of the content in a large and complex knowledge graph would require both medical subject matter expertise and
technical knowledge of the underlying graph technologies. In 2019–2020, an academic–industry research collabora-
tion between the Elsevier Health Markets and the Stanford Center of Biomedical Informatics Research explored the
use of the WebProtégé cloud-based knowledge editing system to facilitate medical subject matter experts (SMEs) to
interactively explore and collaboratively curate Elsevier’s Healthcare Knowledge Graph.

In the following sections, we provide background on Elsevier’s Healthcare Knowledge Graph and the WebProtégé
knowledge editor. We introduce the approaches developed to ensure that the WebProtégé knowledge editor can handle
the scale and complexity of HG for editing and visualization purposes. Finally, we showcase the novel features
developed and the lessons learnt through this collaboration to improve curation of industry-scale knowledge graphs
through interactive and intuitive exploration interfaces.

2 THE NEED FOR KNOWLEDGE CURATION – A CASE STUDY ON ELSEVIER’S HEALTHCARE
KNOWLEDGE GRAPH

2.1 Background on Elsevier’s Healthcare Knowledge Graph

Elsevier’s Healthcare Knowledge Graph (HG) consists of medical knowledge and data, integrated from heteroge-
neous healthcare sources such as clinical guidelines, scientific journals, medical textbooks, and legacy databases. HG
uses popular linked data and semantic web technologies, such as the Resource Description Framework (RDF) and
the JavaScript Object Notation for Linked Data (JSON-LD) for capture and representation of information, and the
SPARQL Protocol and RDF Query Language (SPARQL) for querying and retrieval of information. There is a vast
depth of literature that provide a preliminary understanding on these technologies9, 11–13, 16–23.

Medical knowledge within HG is composed of medical concepts (e.g., RHEUMATOID ARTHRITIS, METHOTREXATE,
KNEE PAIN) and medical term labels and synonyms for these concepts in different languages. Relations exist between
concepts in the form of hierarchical relations (e.g., RHEUMATOID ARTHRITIS has child RHEUMATOID ARTHRITIS

OF WRIST) and associative relations (e.g., RHEUMATOID ARTHRITIS has symptom KNEE PAIN). Concepts also have



mappings to codes in external terminologies used in clinical data integration and electronic medical record systems,
such as the International Classification of Diseases Version 10 (ICD-10) and Systematized Nomenclature of Medicine
– Clinical Terms (SNOMED CT) (Figure 1A).

The core of HG is built from the Elsevier Merged Medical Taxonomy (EMMeT), a polyhierarchical taxonomy, which
was created by integrating and expanding on popular biomedical taxonomies. As a result, medical concepts in HG
can have multiple parent concepts and multiple child concepts (Figure 1B). Medical concepts are also classified into
different semantic types (e.g., DRUG BRAND NAMES) and semantic groups (e.g., DRUGS). Associative medical
relations are classified into different relation types (e.g., has symptom) (Figure 1C). These relation types are derived
after a careful investigation of the Ely taxonomy24 questions asked by clinicians to computational systems at the point
of care, such as “What is the drug of choice for condition X?” and “What test is indicated in situation X?”.

HG contains additional metadata such as prevalence statistics, cohort information (e.g., sex, ethnicity, age groups for
which a given medical relation is valid), geographical information (e.g., countries or states where a given medical
relation is valid), and provenance information (e.g., textbook snippets where a given medical relation is mentioned14).
Figure 1D shows a schematic representation of cohort and provenance information associated with the relation —
RHEUMATOID ARTHRITIS has drug METHOTREXATE. Medical knowledge is stored as structured (subject, predicate,

object) RDF triples in HG, where the subject and object often refer to Uniform Resource Identifiers (URIs), which are
unique and refer to different entities (i.e., medical concepts, documents, labels, cohorts, etc.).

HG’s polyhierarchical taxonomy of medical concepts is manually curated by Elsevier’s medical subject matter ex-
perts (SMEs). Medical relations between concepts can be manually curated by medical SMEs, retrieved from legacy
databases, or extracted from unstructured text through automated machine learning and natural language processing
(ML/NLP) pipelines14, 15 (Figure 2A). A few statistics related to HG are presented in Table 1. Medical knowledge
in HG is consumed by several clinical products in search, recommendation, and decision support, through various
Application Programming Interface (API) services and projections15.

Table 1: Size and complexity of Elsevier’s Healthcare Knowledge Graph (HG). The first two columns indicate
the number of medical concepts and manually-curated relations, categorized according to a few different concept and
relation categories. The last column indicates the different types of additional information captured in HG.

Medical Concepts Manually-Curated Medical Relations Other Information
DISEASES 75K+ has clinical finding 10K+ Labels 1.5M+
DRUGS 48K+ has symptom 27K+ Cohorts 10K+
PROCEDURES 63K+ has cause 20K+ Mappings 573K+
SYMPTOMS 90K+ has procedure 15K+ Documents 1.5M+
ORGANISMS 35K+ has child concept 50K+ Excerpts 217K+
... ... ... ... ... ...
Total Concepts 400K+ Total Relations 1M+

2.2 Challenges to interactive exploration and collaborative curation

Healthcare knowledge graphs need continuous and collaborative curation to keep the medical knowledge constantly
updated to reflect recent trends, events, and developments. SMEs who are proficient in medical knowledge discuss and
work in coordination to search and distill medical facts (e.g., ‘methotrexate can be used to treat rheumatoid arthritis

in a certain population’) from recent scientific and medical literature, and curate and refine extensive knowledge



management systems using these facts25. While automated ML/NLP pipelines that use advanced models (e.g., BERT
language models26) can assist in the identification and extraction of novel medical facts from unstructured scientific
and medical literature14, 27, the facts need to be validated by SMEs if they are going to be used in clinician-facing
computational systems at the point of care.

Generally, medical SMEs are not conversant in the technologies used behind healthcare knowledge graphs. They may
have difficulty grasping the knowledge representation and querying technologies that have a steep learning curve for
even experienced software engineers11. Medical SMEs need a knowledge editing system with advanced user interfaces
to enable them to interactively explore and collaboratively curate medical knowledge in extensive knowledge graphs
without worrying about the underlying graph complexity and knowledge representation techniques.

HG has myriad categories of other stakeholders such as solution and enterprise architects, ML/NLP scientists, data en-
gineers, application developers, product owners, medical informaticists, business developers, and international stake-
holders. These additional stakeholders may be interested in several different tasks associated with the knowledge
graph (e.g., understanding how HG can improve their product, developing methods and applications that leverage
or improve HG, aligning the business initiatives around knowledge management and technology infrastructure, etc.).
There is a large variation in the roles, skills, the breadth and the depth of technical expertise and product knowledge
across these stakeholders. The candidate knowledge editing system could ideally also be used by various stakeholders
through different roles to interactively explore medical knowledge contained within HG.

Several key stakeholders at Elsevier conducted an extensive requirements analysis for a knowledge editing system
through multiple day-long workshops to gather user requirements and expectations from medical SMEs and HG tech-
nology developers. These requirements were prioritized and categorized into broad buckets (e.g., search and view,
data manipulation). A few of these requirements are listed in Table 2 for an overview. While some of these require-
ments may seem trivial (e.g., Requirement G1), it was important to list and prioritize all requirements. It is extremely
difficult for a single knowledge editing system to support all these requirements, especially for the scale of HG with
billions of triples. It is also important to note that the satisfaction of some requirements is relative for different users.
For example, different developers may have different expectations for a ‘nominal’ time to import the entirety of HG
within a knowledge editor system (Requirement G4). Additionally, different SMEs may have different expectations
for intuitiveness or interactivity for a user interface (Requirements SV1 and DM1).

Elsevier evaluated several actively-maintained knowledge editing systems through practical experiments (e.g., im-
porting the entirety of HG, UI personalization, integrity constraint checks, etc.). The goal of these experiments was
to classify requirements listed in Table 2 for each knowledge editing system as follows: i) the requirement is fully
supported through built-in features of the system, ii) the requirement can be satisfied with minor modifications to the
built-in features, and iii) the requirement is currently not satisfied and completely novel features or workarounds will
need to be developed within the system. After several months of discussions and experiments in collaboration with
the medical SMEs, Elsevier selected the WebProtégé knowledge editing system, a cloud-based ontology editor, devel-
oped and maintained at Stanford University’s Center of Biomedical Informatics Research28, 29. The academic–industry
collaboration was established to further develop additional features and modifications to meet our requirements.



Table 2: A few requirements to be satisfied by a knowledge editor system for HG. The first three columns indicate
the category of the requirement (G - General, SV - Search and View, DM - Data Manipulation, IP - Integrity and
Provenance), the beneficiary stakeholder, and the description of the requirement, whereas the last column indicates
how the requirement was satisfied by the WebProtégé knowledge editor system during our preliminary evaluation.

Stakeholder Requirement WebProtégé Support
G1 SMEs and

Developers
Support for collaborative editing through simultane-
ous sessions by SMEs, who may use diverse lan-
guages and browsers, and live in different regions

Built-in support for
advanced browsers

G2 SMEs and
Developers

Support for different user roles and allowed capabili-
ties within the system

Built-in support

G3 Developers Integrate the knowledge editor with the existing de-
velopment workflows, infrastructure, and channels

Integration is easy due
to use of open source
software stack

G4 Developers Easily import and export multiple versions of the en-
tire industry-scale knowledge graph within the editor
system under ‘nominal’ time

Features needed

G5 Developers Ability to easily customize the search, viewing, and
editing interfaces for different users

Features needed

SV1 SMEs Intuitive and interactive interfaces to visualize differ-
ent aspects of HG (e.g., HG polyhierarchical taxon-
omy, complex and granular relations, etc.)

Features needed

SV2 SMEs Define personalized language and UI preferences
within the system

Built-in support

SV3 SMEs Search external biomedical vocabularies (e.g.,
SNOMED CT, ICD-10) for medical concepts

Built-in support with
some modifications

SV4 SMEs Perform advanced searches in the knowledge graph
(e.g., mappings, fuzzy search)

Built-in support with
some modifications

DM1 SMEs Intuitive and interactive interfaces to create, edit,
delete, or retire medical concepts and relations

Features needed

DM2 SMEs Drag and drop hierarchical branches and translations
for medical concepts within HG

Built-in support

DM3 SMEs Perform bulk edits, additions, or deletions for medical
concepts, relations, and labels within HG

Features needed

IP1 SMEs and
Developers

Explore and/or validate large data sets (e.g., relations
extracted from ML/NLP pipelines)

Features needed

IP2 SMEs and
Developers

Collect and explore metadata around each edit or
modification made by a user

Built-in support with
some modifications

IP3 Developers Incorporate constraints, quality assurance, and in-
tegrity checks around data input

Features needed

2.3 WebProtégé knowledge editing system

The WebProtégé knowledge editing system is a Web-based version of the Protégé desktop-based ontology editing
tool, which has been widely used to edit and refine several popular medical ontologies and knowledge bases, including
the Gene Ontology, National Cancer Institute Thesaurus, World Health Organization’s International Classification of
Diseases - Version 11. WebProtégé has been primarily used to edit ontologies and knowledge bases created using
the Web Ontology Language (OWL). Recently, the use of WebProtégé has also been explored to curate industry-
scale knowledge graphs, such as the Pinterest Taste Graph30. The publicly hosted version of WebProtégé (Hosted at
webprotege.stanford.edu) currently has more than 68K user accounts and more than 99K projects.



WebProtégé has several built-in features that instantly satisfied some of our requirements for the ideal knowledge
editing system (G1, G2, SV2, DM2). These included collaborative editing with full change tracking across users,
rollback and replay changes globally or per concept, user roles, discussion threads, chat and mail notifications, among
others, all designed for collaborative curation of medical ontologies. The use of an open source software stack within
WebProtégé (e.g., Tomcat web server, MongoDB document database) also satisfied an additional technology require-
ment. It should be noted that Table 2 only lists some of the considered requirements, and only displays the results
from our preliminary evaluation of the WebProtégé knowledge editing system.

Knowledge graphs and ontologies are stored as separate projects within the WebProtégé knowledge editing system and
it is currently possible to store multiple versions of the same knowledge graph as different projects or make revisions
to the same knowledge graph in the same project (part of requirement G4). As shown in Figure 2C, WebProtégé is
equipped with the Bulk Edits API that enables developers to add or delete statements that correspond to groups of
OWL axioms in bulk. The ontologies and edit histories are stored in a separate file system. Moreover, the Revisions
API allows developers to export revisions or changes made by SMEs to a given project (e.g., addition of a new
concept or a relation). Information on projects, users, user roles, preferences etc. is stored in a MongoDB document
database. Additional customizations (e.g., UI design specifications like color and font, system settings such as the
project dormant time) are stored in separate ‘properties’ or style files.

3 APPROACHES TO HANDLE SCALE AND COMPLEXITY OF HG WITHIN WEBPROTÉGÉ

In addition to the built-in features that satisfy some of Elsevier’s requirements, there are several additional features
and modifications we need to implement within Elsevier’s Healthcare Knowledge Graph (HG) model and processes
and in the WebProtégé editing system to enable medical SMEs to curate HG on a regular basis. We have developed
additional methods and features to address the following requirements from Table 2 — G4, G5, SV1, DM1, DM3,
IP1, IP3. We have grouped these additional methods and features in three main groups which we will explore further.

3.1 Handling complexity through model transformations

Since WebProtégé has been typically used for editing OWL ontologies in biomedicine, the display features in the
editing system are geared toward the usage of OWL axioms and modeling patterns. However, HG has been developed
using an RDF-based representation model. OWL and RDF can both be serialized to compatible formats and stored
as graphs (e.g., triple-based formats such as Turtle). While we successfully imported the entirety of HG into the
WebProtégé editor during our experiments to select a knowledge editing system, we were not able to visualize the
rich polyhierarchical taxonomy, associated concept labels, or relations, in an intuitive way for the medical SMEs (e.g.,
indented tree layout visualization for taxonomies). To satisfy the requirements SV1, DM1, and IP1, we developed
model transformation logic which converted the custom RDF-based representation model used in HG into an OWL-
based representation model before importing into the WebProtégé knowledge editing system.

Through model transformation, all HG medical concepts are designated as OWL classes and the concept hierarchy
is represented through the use of rdfs:subClassOf property. Properties that associate medical concepts to metadata
(e.g., concepts are mapped to concept labels using (hasMedicalName, or concepts are mapped to codes in external
terminologies using hasExternalCode) are represented as OWL annotation properties. All associated metadata are
also represented as OWL named individuals to capture the additional information (e.g., concept labels have additional
search keywords). An HG concept is associated with multiple OWL named individuals (e.g., multiple concept labels)



by the OWL annotation properties (e.g., hasMedicalName) created through this modeling approach.

Currently, associative relations within HG are classified into different relation categories and generally have a subject
concept and a object concept (e.g., in Figure 1D, RHEUMATOID ARTHRITIS is the subject, METHOTREXATE is the
object, and has drug is the category of the relation). The same given relation can be derived from multiple sources
(e.g., different medical textbooks can mention the relation between RHEUMATOID ARTHRITIS and METHOTREXATE)
and can have associated granular information (e.g., cohort details, provenance information) that vary depending on
the the source of the relation. For each unique relation between two HG concepts (i.e., each unique relation triple
of subject, category, and object), we created an OWL class, which is a child class of the relation category. The new
relation class has existential role restrictions with the associated medical concepts (i.e., RHEUTMATOID ARTHRITIS

and METHOTREXATE). Moreover, each mention of this relation, as observed in different sources, is represented as
an OWL named individual that belongs to the newly created relation class. The named individual can further have
property assertions that associate additional relation metadata (e.g., cohort, provenance, strength of the relation) to
the relation mention. This model transformation equips WebProtégé editing system to display the large number of
NLP-extracted relations if the SMEs want to manually curate them in the future.

SPARQL CONSTRUCT query templates are used to extract triples from HG and transform the underlying model
of those triples (Figure 2B). These templates are designed to transform different aspects of the knowledge graph
(e.g., concept hierarchy, concept mappings). Revisions made daily by SMEs in the WebProtégé editing system are
exported through the built-in Revisions API. However, these revisions are stored in a functional OWL format with
the transformed model. Hence, we have developed reverse model transformation logic as well to parse the functional
OWL revisions and convert them back to the representation model currently used in HG. A large number of projections
and API services that are used to power various clinical applications and are dependent on the persistence of the
HG data model. Through these model transformations between RDF and OWL, we ensure that the HG RDF-based
representation model is not currently modified outside of the WebProtégé editing system.

3.2 Handling scale through improvements in processes, search, and automation

Traditionally users have uploaded their ontologies or knowledge graphs in the WebProtégé editing system through the
user interface. A basic requirement (G4) is the ability to ‘programmatically’ import and export multiple versions of
HG within the knowledge editing system through automated pipelines under ‘nominal’ time. While WebProtégé has
a built-in Bulk Edits API to add or delete large numbers of triples, we were unable to import the entire HG before or
after model transformation in one attempt. Common reasons for failure included network timeouts and issues parsing
triples in a consistent manner under desirable time.

We developed a ‘chunking’ algorithm to split HG into smaller graph clusters with a set number of triples for upload
within WebProtégé . Model transformations led to the creation of a large number of ‘blank’ nodes, especially through
the use of different role restrictions for representing associative relations between HG concepts. Blank nodes are often
used in RDF and OWL-based knowledge representations to associate additional granular information (e.g., Figure 1D
has cohort and provenance information attached to a blank node that represents an HG relation) or to create equivalent
classes in role restrictions (e.g., ∃hasSubject .RheumatoidArthritis is a class of relation individuals, where at
least one linked subject belongs to RheumatoidArthritis, and can be represented as a blank node in the OWL
representation and a triple-based serialization). During chunking, we have to ensure that triples referring to a given



blank node remain in the same cluster. To determine the optimal number of triples in each cluster, we experimented
importing the entire HG into WebProtégé with different cluster sizes.

Potential medical knowledge in HG is also generated through additional methods (e.g., ML/NLP pipelines, ETL
pipelines, or other bulk data deliveries). These updates need to be made to the HG version in WebProtégé for medical
SMEs and other stakeholders to browse and validate the new knowledge (Requirement DM3). In these cases, we only
upload the modifications (referred to henceforth as ‘deltas’) to WebProtégé , instead of re-importing the entire HG.
There are several mechanisms to compute deltas between two versions of an RDF graph31. However, in many cases
these mechanisms are not often computationally feasible and can become prohibitively time consuming, especially
when dealing with the size of HG. We have developed domain-specific heuristics to compute deltas over different
aspects of HG (e.g., concept hierarchy, concept mappings). Delta computation is only triggered when a given aspect
of HG is updated. The computed deltas are uploaded into WebProtégé after model transformation and chunking.

A requirement around the search of medical concepts and relations within HG (Requirement SV4) led to a compre-
hensive avenue of improvements within the WebProtégé editing system. WebProtégé had a built-in search interface
for simple searches of OWL classes using their labels, as well as a DLQuery (description logic query) interface for
formulating advanced queries (e.g., over graphical paths or using regular expressions) that is shown in Figure 3B.
However, after initial import of HG with more than 1.5M labels (including medical names, consumer names, syn-
onyms, etc.), the original search was very slow to retrieve the relevant responses. We incorporated Apache Lucene
within the WebProtégé editing system to improve the search performance in both the conventional search interface
and the advanced query interface. The embedded Lucene search indexes are stored within the WebProtégé file sys-
tem (Figure 2C). Moreover, UI customizations enabled developers to provide annotation properties (rdfs:label) and
annotation property paths (e.g., synonym → rdfs:label) from where the labels will be indexed.

Elsevier uses automation to easily build and deploy new versions of the WebProtégé system from any branch in the
publicly available GitHub repository (https://github.com/protegeproject/webprotege), as well as
to import different versions of HG within the WebProtégé system. Elsevier extensively uses Docker and automation
pipelines to build the WebProtégé web application archive (WAR), which is then stored and deployed on Elsevier’s
private cloud through the Tomcat web server. Similarly, the MongoDB document database is also built and deployed
through such automation pipelines. It currently takes around 11 hours to import HG into WebProtégé through auto-
mated scripts and the Bulk Edits API, after the completion of model transformation and chunking HG into mini-graphs,
with each mini-graph having approximately 500K triples (Figure 2B). Revisions are exported from the WebProtégé
system on a nightly cadence through the Revisions API.

3.3 Improving user experience through novel WebProtégé UI features

WebProtégé has several built-in UI features and views that enable editors to explore, query, and edit knowledge graphs.
Moreover, these features and views can be personalized as required by the users according to their language and display
preferences. For example, as shown in Figure 3A, we have created a personalized layout of tabs, and different panels
or ‘views’ in each tab (e.g., ‘Editorial View’ tab) that were of interest to our medical SMEs. However, additional
user interface (UI) features were required to improve the usability and user experience of WebProtégé for Elsevier’s
medical SMEs to visualize and collaboratively edit HG (Requirements G5, SV1, and DM1).

The default views within WebProtégé are entity-centric. When a user is browsing a given entity (i.e., a class or an



individual) all entities linked with the given entity through annotation properties and object properties at one hop
away in the knowledge graph are shown in the WebProtégé browser. when viewing any given medical concept of
HG within WebProtégé , all of these annotations and relations were displayed in a single list (through the built-in
‘Class’ view in WebProtégé ). This forced medical SMEs who were viewing or editing large concepts with exhaustive
medical knowledge (e.g., DIABETES MELLITUS or ASTHMA) to scroll an extremely long list and click multiple times
to browse certain granular information (e.g., source or cohort of a given relation or mapping).

To improve this user experience we developed several sets of UI elements and features, grouped under a novel
WebProtégé ‘Forms’ view (Figure 3A). It allows developers to create customizable display and editing interfaces
which are more relevant and intuitive for medical SMEs to browse and edit HG within WebProtégé . Medical in-
formation is grouped into different sub-tabs, depending on the different aspects of HG (e.g., description, synonyms,
mappings, relations). Each sub-tab further displays additional groupings and classifications of medical information
depending on the context. For example, the ‘Relations’ sub-tab (Figure 3A), displays the different associative typed
relations for RHEUMATOID ARTHRITIS, grouped according to the relation type (e.g., has drug). Within the sub-tab,
relations are shown as a grid with different columns displaying the relation metadata (e.g., source of the relation, rank
– strength of the relation). Through the use of advanced web-based features, such as pagination, tabs, and collapsible
sections, the user can easily browse hundreds and thousands of nodes and edges, linked to any given medical concept,
at different hops in the knowledge graph without being overwhelmed. The user can easily search or click to browse
any other medical concept using the class hierarchy view displayed in the right of the ‘Forms’ view. When the medical
SME wishes to edit medical information for any given concept, the same ‘Forms’ view can directly be transformed
into an editorial interface by clicking on the ‘Edit values’ option. In certain cases, the editorial interface has interactive
UI elements (e.g., dropdowns or radio buttons), depending on the expected type of user input.

HG developers collaborated with medical SMEs and decided on the most optimal and intuitive manner to display
medical information in the ‘Forms’ view, and use another interactive administrator interface to customize the ‘Forms’
view. In this administrator interface, the developers can bind different elements in the knowledge graph (e.g., object
property, instances, classes) to different UI elements for display (e.g., grid, text field, number field, etc.). This binding
can be done recursively enabling graph traversal (e.g., the label of the source of a relation may be three or more hops
away from the subject concept being browsed). These customized display and editorial forms are created for different
aspects of HG (e.g., mappings), as well as for creating or for deprecating medical concepts in HG. The ‘Forms’
administrator interface provides the ability to incorporate simple constraints (e.g., only integer values in a given range
for a given field) around the expected data input in the editorial forms (Requirement IP3).

During this project, we have developed several other minor, yet novel, UI features to improve the workflows and the
user experience for medical SMEs while browsing and editing HG. For example, an initial version of the WebProtégé
‘Entity Graph’ view30 visualized all outgoing edges from a given OWL class (hierarchical relations and property
associations). In the case of medical concepts in HG that have a lot of associated medical knowledge (e.g., common
diseases such as ASTHMA and DIABETES MELLITUS), this would become overwhelming to browse for a medical
SME and would also affect the page loading time for the entire web application. We developed the ability to use edge
filters with a default filter to only visualize hierarchical relations (i.e., rdfs:subClassOf edges) for the selected concept.
This increasingly improved the user experience for less advanced and first time users and enabled medical SMEs to
visualize the rich polyhierarchical taxonomy of HG (Figure 1B). Similar concept, edge, and language filters were also
developed to improve search and display preferences within the UI. Through the use of these filters, medical SMEs



were able to search for only ‘drug’ concepts or browse mappings or labels in a given language.

4 DISCUSSION

Manual curation and continuous refinement of industry-scale knowledge graphs, especially in healthcare and biomed-
ical domains, are crucial to the successful use of those knowledge graphs. However, an ideal ‘one size fits all’ knowl-
edge editing system does not exist. Different knowledge graphs and stakeholders have varying requirements and
interpretations around how an ideal editing system should function. Elsevier’s preliminary experiments with different
knowledge editing systems led us to select the WebProtégé system with their open source technology stack and es-
tablish a close R&D collaboration between the developers of the knowledge editing system and the developers of the
knowledge graph, so that the required features can be developed internally.

This R&D collaboration also had a set goal of incorporating a technology system, developed and maintained by aca-
demic researchers, into an industry technology stack and workflow, with automated build and deployment processes,
minimal downtime, production-level quality assurance, backups, and an interactive user experience for our medical
SMEs. To achieve this, developers of the WebProtégé editing system and the developers of HG met on a regular
cadence every alternate day to discuss progress and priorities. These meetings were often attended by medical SMEs,
from different geographical regions, and infrastructure engineers to discuss their needs and requirements.

Previously, the WebProtégé team has established R&D collaborations with other companies to develop additional
features within the system30. However, the uniqueness of this R&D collaboration with Elsevier Health Markets was
that the WebProtégé team was not directly responsible for creating or extending HG itself due to the maturity of the
graph. Moreover, the UI requirements of Elsevier’s stakeholders as well as the scale, multi-language support and the
intricate structure of HG posed unique challenges for the WebProtégé system.

In some cases, where the collaboration fell short to meet the key requirements within the project period, alternate
workarounds were outlined and developed to meet those requirements later. For example, to meet the requirement for
quality assurance (QA) through complex model constraints and integrity checks around the exported revisions from
the WebProtégé editing system, the developers later implemented a QA testing framework where the lead medical
SME can accept or reject certain revisions made to HG. Automated QA tests also evaluate the graph revisions for
model violations (Figure 2B). The rejected revisions are tagged within WebProtégé through a custom Tagging API
service that internally uses the WebProtégé Bulk Edits API and the WebProtégé tagging framework30.

In the previous section, we have given an overview of the different approaches and improvements made to our pro-
cesses, as well as features and improvements made to the WebProtégé editing system to accommodate the requirements
of different stakeholders. The novel features developed and the improvements made to WebProtégé (e.g., Lucene
search, ‘Forms’ view) through this collaboration are generically applicable and customizable for different knowledge
graphs in other domains as well. The novel features and modifications incorporated within the WebProtégé system are
publicly available through the GitHub repository.

There are still several shortcomings and features that are required in the WebProtégé knowledge editing system to
improve the workflow of medical SMEs and other stakeholders who search, browse, and edit HG. Two major avenues
for novel feature development within the WebProtégé system are:

1. Query Template Management: The user can formulate advanced queries (e.g., regular expression query com-
bined with graph traversal) using the DLQuery interface (Figure 3B). However, to formulate queries using this



interface, medical SMEs need to be aware of the exact modelling patterns (i.e., the data/object/annotation prop-
erty paths), which is often difficult and non-intuitive. The steep learning requirements for formulating complex
semantic queries is a common user experience problem, which has been well documented in prior research11, 32.
A query template management framework that enables HG developers and medical SMEs to save and share
query templates with other users within the WebProtégé system is ideally required.

2. User Role Management: WebProtégé has some built-in user roles (e.g., Viewer, Editor, Commenter, Manager),
and different users can perform different actions within the system, depending on the assigned role. However,
user roles are not uniform across different projects and different knowledge graphs. For example, within HG,
more granular user roles are required for users who can edit the graph with different capabilities (e.g., Bulk

Editor, Limited Editor, Knowledge Manager). A user role management framework that enables HG developers
to create custom user roles with different functionalities within the WebProtégé system is required.

5 CONCLUSION

In this case report, we have presented our adoption and further development of the WebProtégé cloud-based knowledge
editing system to enable medical subject matter experts to regularly curate and refine Elsevier’s Healthcare Knowledge
Graph (HG). Elsevier’s stakeholders selected WebProtégé from several candidate knowledge editing systems after a
thorough analysis of requirements as well as after conducting several experiments and investigations on the handling
of size and complexity of HG within the editing system. To incorporate the WebProtégé editing system firmly within
Elsevier’s industry technology stack, a close R&D collaboration was established between the WebProtégé and HG
developers, along with medical SMEs and infrastructure engineers. Through this collaboration, several approaches,
methods and processes were developed and improved iteratively to ensure that WebProtégé can accommodate the size
and complexity of HG. We also collaboratively developed several novel features and modifications within WebProtégé
to improve the usability and user experience of medical SMEs and other stakeholders, who browse, edit, and search
HG. We believe that this case report will impress upon the readers the need for knowledge curation and refinement for
industry-scale healthcare knowledge graphs and provide guidance on the methods and approaches that can be used to
achieve the goal. Additionally, since features and modifications made to the WebProtégé knowledge editing system
are released in the public version, we have provided the motivation and detail on the development of these features to
facilitate their adoption by other academic and industry research groups in curating their knowledge graphs.
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Figure 1: Elsevier’s Healthcare Knowledge Graph (HG): (A) A screenshot of HGViz, an in-house visualizer,
provides a synoptic view of HG content. For the concept RHEUMATOID ARTHRITIS, HG has related content in
different languages (e.g., Chinese, Spanish, French), linked content related to RHEUMATOID ARTHRITIS from existing
journals and books (e.g., Ferri’s Cinical Advisor 2021), other linked concepts in HG (e.g., drugs, symptoms, diagnostic
procedures) through expert-curated semantic relations, and mappings to related concepts in other terminologies (e.g.,
ICD-10, SNOMED CT). (B) RHEUMATOID ARTHRITIS is organized in HG’s rich polyhierarchical taxonomy with
multiple parents (e.g., ARTHRITIS), ancestors (e.g., ARTHROPATHY), and children (e.g., FELTY SYNDROME). (C) A
hairball visualization, centered on RHEUMATOID ARTHRITIS, showcases associative relations grouped according to
different relation types (e.g., has clinical finding, has drug). (D) HG has additional granular information and metadata
linked to each concept or relation, such as cohort information (e.g., age, sex, ethnicity, for which a given relation —
RHEUMATOID ARTHRITIS has drug METHOTREXATE — is valid, or provenance information (e.g., text snippet from
a medical textbook where the relation was extracted from).



Figure 2: Integration of WebProtégé editing system in the Elsevier’s Healthcare Knowledge Graph technology
ecosystem: (A) Elsevier’s Healthcare Knowledge Graph extensively uses ETL pipelines to extract, transform, and
load medical information from legacy databases and ML/NLP pipelines, as well as manual tagging interfaces, to
identify and extract medical relations from several sources of medical literature. Medical knowledge is represented as
a knowledge graph and made available to several clinical applications through projections and sources. (B) Through
several heuristics and methods, medical knowledge in HG is transformed and broken down into smaller chunks,
representing different aspects of HG (e.g., concept hierarchy, concept labels, associative relations), for import into the
WebProtégé knowledge editing system using the built-in Bulk Edits API. Similarly, changes made by medical subject
matter experts (SMEs) are exported out of the WebProtégé system using the Revisions API and transformed back to
HG’s model. After QA of the graph revisions, approved edits are incorporated in HG and rejected revisions are tagged
in WebProtégé for further edits. (C) The WebProtégé knowledge editing system uses open source technologies, such
as the Tomcat web server to run the application, the MongoDB document database to store users, forms, preferences,
roles, projects, etc., and a file system to store ontologies, edit histories, and search indexes. Moreover, WebProtégé
allows several different stakeholders, including medical SMEs, to explore HG through different roles and permissions.



Figure 3: User Interfaces of Elsevier’s Healthcare Knowledge Graph within the WebProtégé Editing System:
(A) The ‘Editorial View’ tab is a fully-customized display for the medical SME to browse and visualize HG. The
left panel shows an indented tree visualization of HG’s concept hierarchy, whereas the right panel shows the ‘Forms’
display of information associated for the selected concept (e.g., RHEUMATOID ARTHRITIS) organized in different
sub-tabs. The ‘Relations (Subject)’ sub-tab displays the associative relations where the medical concept is a subject,
with the focus on has drug relation type. (B) A complex path query executed within the WebProtégé editing system
to search for medical concepts in HG whose synonyms match the regular expression pattern ‘hem.*gioma’.


