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1 Introduction

Building energy consumption accounts for close to 50% of the electricity usage in the United States.
Building energy simulation models have become an industry standard to help in the decision making
process to improve building design in order to reduce consumption, but there is a known discrepancy
between these models and actual building energy performance once completed. This is due to their
accuracy being compromised by approximations, assumptions and simplifications made in the model.
In particular, internal loads are a critical determinant of building performance and their simulation is
the most lacking, partly due to simulated occupancy - which accounts for most of a building’s internal
loads - being considered discrete, deterministic and unchanging in hour-long periods of time. Previous
work has focused mostly on the determination of building occupancy exclusively in terms of presence -
whether people are in the space or not - to regulate heating, ventilation and air conditioning systems
(HVAC) accordingly. We propose that the type of task the activity level of the occupants also impacts
the building’s performance, and viceversa - the building’s performance impacts occupant state. For this
purpose, we will analyze building sensor data along wearable sensor data on the occupant measured
simultaneously in a controlled environment in order to classify occupant activity levels and determine
the distinct impacts on the space occupied by the user.
Keywords: Wearable Computing, Smart Sensors, Ambient Intelligence, Building Energy Performance

2 Related Work

There has been some research in the application of Artificial Intelligence methods to adapt environmen-
tal conditions according to user preferences. This branch of AI, called Ambient Intelligence, generally
exploits the information about the environment state through cheap and unobtrusive sensors for con-
tinuous monitoring. A HVAC control strategy based on occupancy prediction and real time occupancy
monitoring via a sensor network of cameras was proposed by Erickson et al ?. A technique to determine
the occupancy and indoor environment quality (IEQ) in buildings by enhancing physical measurements
from a distributed sensor network with a statistical estimation method was proposed by Han et al ?.
They used passive infra-red (PIR) sensors, Carbon Dioxide (CO2) concentration sensors, and relative
humidity (RH) sensors, and modelled the occupancy pattern using Autoregressive Hidden Markov Mod-
els. Lu et al. demonstrated the use of cheap and simple sensing technology called ‘SmartThermostat’
to automatically sense occupancy and sleep patterns in a home, and how to use these patterns to save
energy by automatically turning off the home’s HVAC system ?. Hoeycnk et al. predict behavior and
occupancy in a building using sensors and try to intelligently control the conditions ?.

3 Task Definition

The first goal of our project is to determine the impact of activity levels of occupants of a room on the
state of the room. We define the room state (denoted by RS) at time t as values of Room Temperature
(T) and Relative Humidity (RH) at that time instant. Thus, RSt = {Tt,RHt}. Bio-physiological sensors
worn by room occupants provide primary indicators for occupant activity levels. The details of the bio-
physiological sensors are outlined in the next section. Room CO2 level (C) acts as a secondary indicator
of activity inside the room. In order to study the impact of occupant activity on room state, we first
classify occupant activity levels into distinct classes. Then, we predict the room state using occupant
activity levels and outside weather data as features. The second goal of our project is to determine
whether it would be possible to control the environmental conditions of the room in order to maximize
desirable occupant states - for example, increase both concentration and relaxation levels, and reduce
stress or anxiety levels as determined by the bio-physiological data.
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4 Infrastructure

We generated a dataset of environmental and occupant data collected using the following devices:
Rotronic CO2 display, Neurosky Mindwave and Samsung Gear S smart watches. We collected smart
watch data using the PRISM platform, whereas we had direct access to the mindwave and CO2 display
streams. We also queried the Dark Sky Forecast API1 to get the outside weather conditions during the
time of our experiments. These are the different data types from these sensors:

1. Neurosky Mindwave (at 1 second granularity):

• Brain Waves

(a) Alpha High (αH) and Alpha Low (αL): Present in deep relaxation or during light
meditation. Optimal for imagination, visualization, memory, learning and concentration.

(b) Beta High (βH) and Beta Low (βL): Associated with normal waking consciousness
and a heightened state of alertness, logic and critical reasoning. Important for effective
functioning but can translate into stress, anxiety and restlessness.

(c) Delta (δ): Experienced in deep, dreamless sleep and in very deep, transcendental medi-
tation where awareness is fully detached.

(d) Theta (θ): Present during deep meditation and light sleep, including REM dream state.

(e) Gamma High (γH) and Gamma Mid (γM): Associated with bursts of insight and
high-level information processing.

• Attention and Meditation Levels

• Electrical Activity of the Brain: EEG raw values

2. Samsung Gear S smart watches (at 1 second granularity):

• Environmental: Light intensity levels,

• Physiological: Heart rate (beats per minute and R-R intervals)

• Accelerometer: Device acceleration and rotation in X,Y and Z axes

• Pedometer: Cumulative distance walked, total number of walk and run steps, speed, calories
burnt, walk frequency and walk status

3. Rotronic CO2 display (at 1 minute granularity):
i) CO2 levels, ii) Temperature, and iii) Humidity

4. Forecast API Weather Data (at 1 minute granularity):
i) Ozone levels, ii) Temperature, iii) DewPoint, iv) Humidity, v) Visibility, vi) Apparent tempera-
ture, vii) Pressure, viii) Wind speed, ix) Cloud cover, x) Wind bearing, xi) Precipitation intensity,
xii) Precipitation probability, and xiii) Summary.

All the data types except ‘Walk Status’ and ‘Summary’ are continuous, whereas ‘Walk Status’ and
‘Summary’ are discrete respectively based on the state of the individual (e.g. ‘Walking’, ‘Running’ and
‘Not Moving’) and outside weather that day (e.g. ‘Clear’, ‘Cloudy’ and ‘Rainy’). As the smart watches
and the mindwave devices measure the data at a granularity of a second, we had to also summarize the
second observations for each minute. The summary statistics so generated for each feature were: i) Max,
ii) Min, iii) Mean, iv) Median and v) Standard Deviation. We collected data over x 1-hour time periods,
when an occupant wears a smart watch and the mindwave device and works in a room equipped with
the Rotronic CO2 display. We also queried Forecast API for weather data during that period.

During the generation of summary statistics for the smart watch data, we found that the sensors of
our smart watches were erroneous and there were a lot of missing data points, sometimes for more than
three minutes. Using the summary statistics in the downstream methods presented errors due to these
missing data points. We plotted the distribution of our values, in essence the maximum and the minimum
values detected over a period of a minute, for all the data points that we had. As shown in Figure ??, the
combined plot of the maximum and minimum values (in this example, Acceleration in the X direction)

1https://developer.forecast.io/docs/v2
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follows a Gaussian distribution. As a result, we tried to impute missing values using two approaches,
i) if X1 and X4 are two data points recorded at t = 1, 4 minutes, then X2 = 2X1+X2

3 , X3 = X1+2X2

3
(linear imputation), and ii) assuming the sensor values do not change, i.e. X2 = X3 = X1. The resulting
distribution after imputation using the first approach is shown in Figure ??. It can be seen that the
structure of the original distribution is not maintained and we see a disproportionate curve for the
minimum values. Our second method relied on an assumption that was incorrect especially as the smart
watch detects minute wrist movement over seconds. As imputing missing data falls beyond the scope of
this project, we decided to exempt smart watch data altogether from further analysis.

Figure 1: Before Imputation: Distribution of the
minimum and maximum values over all 1-minute
time periods for Acceleration in the X-direction.

Figure 2: After Imputation: Distribution of the
minimum and maximum values over all 1-minute
time periods for Acceleration in the X-direction.

5 Approach

5.1 Baseline

The baseline for this project is the prediction of room state exclusively through the use of external weather
data. Since our hypothesis is based on how internal loads affect a room’s environmental conditions, the
basis for comparison solely considers the effects of external loads. The methodology for setting this
baseline is described in the Room State Prediction section.

5.2 Oracle

The Rotronic environmental sensor provided us with correlated temperature, humidity and CO2 levels.
We use inside humidity, CO2 levels and outside weather data to predict inside temperature and inside
temperature, CO2 levels and outside weather data to predict inside humidity. This exercise informed
how accurate our results could be. The methodology for this prediction is also described in the Room
State Prediction section.

5.3 Occupant Activity Level Classification

Generally, when dealing with mindwave data, the optimum state is considered to be the one where the
individual’s attention and meditation levels are equal. A higher attention value indicates more awareness,
but also can lead to more stress, whereas a higher meditation value can indicate concentration, but also
can lead to a sleep state or dreaminess. Hence, based on the original data sources, we had presumed that
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we will find a total of 9 different states, based on the physical and the mental activity performed by the
individual. However, as we decided to ignore the smart watch data, we decided that we might have three
different states. We clustered the 1-second mindwave data into distinct groups in order to identify the key
activity states the occupants of the room exist in. This is essentially equivalent to a vector quantization
operation. Instead of using all these physiological parameters directly, we want to discretize our space
of inputs for user activity level using only K values. Thus, after clustering, we will have K different
levels of user activity corresponding to the K clusters returned by our clustering algorithm. We will
define a label for each of these clusters. We will then label our user state at a particular time instant
with the label of the cluster it belongs to. Thus, along with the room state at each time RSt, we will
also have the user activity state denoted by At. We performed k-means clustering and decided on the
optimum value of k by checking the “Within Group sum of Squares”. We also plot the distributions
of each of the different data types of the clusters using ANOVA box-plots to determine which specific
feature is enriched in each cluster and which is irrelevant. Finally, we provide a qualitative description of
the different clusters, and extend the determined cluster states from each 1-second intervals to 1-minute
intervals to check which state is dominant during that time period.

5.4 Room State Prediction

The evolution of room state over time is determined by complex physical processes which depend on a
lot of variables including outside meteorological and environmental conditions, the number of occupants
in the room and the activities being performed by them, etc. In order to predict the evolution of
room state over time, we develop room state forecast models which predict the room state at 1 minute
granularity using input time series data (at the same granularity) comprising of outside weather data
(outside temperature (OT), outside humidity (OH), dewpoint (D), visibility (V), summary (S), pressure
(P), wind speed (WS), cloud cover (CC) and wind bearing (WB)) and the occupant state status (A).
We also use the timestamps corresponding to our data points as an input feature for prediction. The
timestamp captures information about the time of the day and thus can incorporate differences in room
processes at different times of the day. The outside weather variables are referred to collectively as W
in the descriptions below. We used Dark Sky Forecast API from for obtaining the outside weather data.

Models

We cast the problem of room state prediction over time as a time series forecast problem as our data has
natural temporal ordering. Regression is the most common technique used for time series forecasting
where the value of a variable of interest at time t, also called the response variable (room state in
our case), is modelled as a function of past and current values of several other variables (called input
variables) and regression task is to determine the function which best models this relationship between
response and input variables. Below, we describe the regression models we use for our problem and the
response and input variables in each case.

1. Multiple Linear Regression (MLR): In multiple linear regression, the value of response variable
at time t is modelled as a linear function of input variables at time t. We model each room state
variable as a linear function of input variables. Mathematically,

yt = by + wT
y xt + εy,t, y = {T,RH}, xt = [Wt, At]

T

yt is value of the response variable y at time t, by is the intercept term corresponding to the output
y, xt is the vector of values of input variables at time t, wy is the vector of weights which determines
the relative effect of each input variable on the output variable yt and εy,t is the error term which
takes into account the effect of all the factors not considered by the model.

Multiple linear regression is the simplest regression model which doesn’t take into account the
temporal structure of our data.

2. Autoregressive Model (AR): In this model, the value of response variable at time t is modelled
as a linear function of its past values and current and past values of the input variables. We model
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each room state variable as an auto-regressive model as follows,

y(t) = by +

py∑
j=0

by,jy(t− j) +
∑
x

qx,y∑
i=0

bx,ix(t− i− rx,y + 1) + εy,t

y = {T,RH}, x = {W,A}

y is the response variable, py is the number of past values of output y which affect its present value,
by is the intercept term, x’s are input variables, qx,y is the number of past values of input variable
x which affect the response variable y, rx,y is the delay which determines after how many time
instants the input x starts affecting the output y, bx,i and by,j are the weights which determine
the effect of each of these values on yt and εy,t is the error term which accounts for un-modelled
effects.

This is a more sophisticated model as compared to MLR as it models the temporal dynamics of
the variables involved. This model naturally applies to our problem because the physical processes
determining the room state are not instantaneous. For example, if it starts raining outside, it will
take some time before the relative humidity of the room rises.

3. Non-linear Autoregressive Model (NAR): In this model, we do away with the linearity as-
sumption and model the response variables as a non-linear functions of past values of response
variable and current and past values of the input variables. We model each room state variable as
a non-linear auto-regressive model looks as follows,

y(t) = fy(y(t− 1), . . . , y(t− py), x(1)(t), x(1)(t− 1), . . . , x(1)(t− q1), . . . ,

x(4)(t), x(4)(t− 1), . . . , x(4)(t− q4))

y = {T,RH}, x = {W,A}

y is the response variable, py is the number of past values of output y which affect its present value,
x(i) is the ith input variable, qi is the number of past values of input variable x(i) which affect the
response variable y and fy is a non-linear function which models the effect of all these variables on
the current value of the response variable.

This is the most sophisticated model which attempts to model both the non-linear relationship
between the input variables and the response variable and the temporal structure of our data.

Algorithms

Training

Using training data {(x(t), y(t))|t = 0, 1, . . . ,m}, the task of training is to determine the model param-
eters that perform best on new unseen data. We used MATLAB’s Machine Learning Toolbox and Time
Series Toolbox to train and test our models.

1. Linear Models: We form the response variable and input variable matrices as follows,

Y = [y(0), y(1), . . . , y(m)]T , X =


x(0)
x(1)

...
x(m)

 , Y = Xw

We solve for the weight parameters w by least squares regression using normal equations.

w = (XTX)−1XY

For MLR, x(t) = [W (t), A(t)]. For AR, x(t) = [y(t−1), . . . , y(t−py),W (t), . . . ,W (t−qW,y), A(t), . . . , A(t−
qA,y)]
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2. Non-linear Autoregressive Model: In NAR, the training task is to learn the function fy. We
use function approximation with neural networks to learn fy. At the time of training, we use
a feed-forward topology where the delayed output variables [y(t − 1), . . . , y(t − py)] and current
and delayed input variables [W (t), . . . ,W (t− qW,y), A(t), . . . , A(t− qA,y] serve as the input nodes.
All the input nodes are connected to all the nodes in the hidden layer. The hidden layer nodes
use sigmoid transfer functions to aggregate the input nodes. The hidden layer nodes are then
aggregated using a linear function in the output node. Levenberg-Marquardt backpropogation
algorithm is used for training the neural network.

Prediction

During prediction, we have the input time series data for a time interval and our task is to predict the
value of the response variable over this time interval.

1. For MLR, we simply compute the vector product, y(t) = x(t)
T
w at each time instant.

2. For AR, we assume that we know y(t) for at-least py instants. After that, the predicted output at

time instant t obtained using the vector product y(t) = x(t)
T
w is used as an input at the (t+ 1)th

instant to make multiple step ahead predictions. This is known as iterated prediction.

3. For NAR using feed-forward neural networks, one time ahead prediction at time t can be done
directly using the known outputs [y(t − 1), . . . , y(t − py)] at the previous time steps and inputs.
However, for predicting y(t) over larger time intervals, we need to use a Recurrent Neural
Network, where the output node is connected to the input nodes via feedback connections. During
training, the true delayed output is available and thus we may use backpropogation directly to train
the network as a feed-forward network. During prediction, the value predicted using the neural
network can be fed back as input to the network to achieve ’closed-loop’ or multiple step ahead
prediction over larger time intervals. We didn’t explore training closed-loop RNNs.

5.5 Occupant State Prediction

As previousy described, our second goal is to use the insights from the occupant state classification and
room state prediction in order to determine whether it is possible control the environmental conditions of
the room for maximizing desirable occupant states. With these in mind, we used two different supervised
learning algorithms- logistic regression and soft-max regression - to attempt the prediction of occupant
state based on the room’s environmental conditions.

Model

1. Features: We used the data collected by the Rotronic sensor as the basis of our features. We
used the original sensor data as well as it’s first and second derivatives as features for the learning
algorithms.

2. Labels: The labels for the data came from our clustering effort described previously in Occupant
Activity Level Classification. Once we had established the various mental states, we separated
them into two groups: a) desirable states and b) undesirable states. These two groups determined
the label for each feature tuple.

6 Results

6.1 Occupant Activity Levels

We ran k-means for different values of k = 2, 3, . . . , 100, for a maximum number of 100,000 iterations
and analyzed the “Within Group Sum of Squares” measure. The optimum value of k varied between 5-7
over different iterations, and we decided to select k = 6. A 2-dimensional representation of the cluster is
shown in Figure ??.
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Figure 3: k = 6 clustering of mindwave data

As the first two components of the Principal
Component Analysis only captures 30.76% of the
variance, the overall cluster distribution in space
is more n-dimensional. We further conducted
an ANOVA analysis for each data type (brain-
waves, voltage and attention and meditation val-
ues) across all the clusters. Box plot visualizations
of the first 6 key features are shown in Figure (?? -
??). For the sake of simplicity, we have not shown
γH and γM plots, even though both were statis-
tically significant and were enriched for Cluster 3.
We can qualitatively represent our clusters are as
follows:-

• Cluster 1: very high αL

• Cluster 2: very high θ

• Cluster 3: very high γL, all ranges of βH,
βL, γM , αH with a low median

• Cluster 4: very high θ and δ

• Cluster 5: No values high - baseline

• Cluster 6: very high αH, all ranges of αL
with a low median

Figure 4: αH distributions Figure 5: αL distributions Figure 6: θ distributions

Figure 7: βH distributions Figure 8: βL distributions Figure 9: δ distributions
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6.2 Room State Prediction

Initially, we trained all our models using room CO2 level as an indicator of occupant activity inside
the room. We trained our models using data collected continuously over 5 days between October 10,
2015 to October 14, 2015. The trained models were tested on the data collected between October 19,
2015 to October 22, 2015. For our baseline, we predicted room temperature and relative humidity using
only external weather data. For the oracle, we predicted room temperature using outside weather data,
inside humidity and CO2 levels and inside humidity using outside weather data, CO2 levels and inside
temperature. We used Root Mean Square Error between the predicted response variable and the
actual response variable as our evaluation metric.

The results obtained using MLR have been summarized in the table below:

Response Variable Features RMSE Response Variable Features RMSE
T W,C,RH (Oracle) 0.5469 RH W,C,T (Oracle) 0.4720
T W,C 0.8991 RH W,C 0.8047
T W (Baseline) 1.0713 RH W (Baseline) 0.8088

A comparison of the predicted temperature with the actual temperature for MLR has been plotted in
Figures ??-??. As suggested by the RMSE values and the plots, including information about activity
levels of occupants inside the room improves the prediction accuracy. (RMSE value decreases as we move
from the baseline to the model withW and C as features). We also performed sequential variable selection
on our W and C model to ensure that we were not overfitting with too many outside weather features.
We followed a forward feature selection algorithm where we began with no features and kept adding
features which improved the prediction accuracy on the validation set. From the feature selection results
we inferred that all the outside weather features were important in prediction of inside temperature (and
humidity) with outside temperature, wind speed, dewpoint, pressure and wind bearing being the top 5
outside weather features.

We also trained and tested AR and NAR models on the same dataset as MLR. For the AR models,
we used a delay of 3 units for each input and a delay of 3 units for the output. For NAR, we used a
delay of 4 units for each of the inputs and a delay of 2 units for the output. We used 16 hidden units in
the hidden layer. These hyperparameters were chosen based on the model’s performance on a validation
set. The trained models were used to make multiple step ahead predictions.

For AR, every 12 minutes of past inputs, actual past outputs and 12 minutes of future inputs were
used to predict outputs 12 minutes into the future. The predicted outputs and corresponding RMSE
values (using W and C as features) are shown in Figures ?? and ?? (Appendix A). Twelve step ahead
prediction performance of AR looks promising. However, increasing the number of prediction steps
beyond 12 minutes leads to degraded performance due to accumulation of prediction error.

For NAR, we performed a full closed loop prediction where only future inputs and predicted outputs
are used as inputs for prediction over the entire prediction interval. We also preformed a one step ahead
prediction where the actual values of the output were used to predict the next output value. The predicted
outputs (for temperature) and corresponding RMSE values (using W and C as features) are shown in
Figures ?? and ??. The one step ahead performance of NAR is reasonable with a few outliers. However,
the closed loop prediction is clearly erroneous due to accumulation of prediction error. Changing the
hyperparameters and feature selection did not help in improving the closed loop performance of NAR.
The closed loop performance on the training set was much better which indicates that the neural network
is overfitting the data.

The next step was to use the occupant activity level labels derived from our occupant activity clas-
sification stage as indicators of activity inside the room. We had a total of 646 data points spanning
across multiple data collection episodes. We could not train AR and NAR models on this dataset as
the entire dataset as a whole was not continuous in time because the collection episodes spanned across
several days and a single collection episode only had 60 points (corresponding to one hour). The RMSE
values obtained for various feature combinations using MLR on this dataset are summarized in the table
below:

Response Variable Features RMSE
T W,C,A,RH 1.5794
T W,A 1.6399
T W 1.6409
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In this case also, adding occupant activity levels seems to improve the prediction accuracy over the
baseline. However, a plot of the predicted temperature vs actual temperature revealed that the prediction
performance in this experiment was very poor as compared to the earlier case when CO2 level was used
as indicator of occupant activity.
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Figure 10: MLR (W,C,RH)
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Figure 11: MLR (C,W)
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Figure 12: MLR (W)

6.3 Occupant State Prediction

We ran logistic regression and soft-max regression on the features and labels discussed previously, using
our own version of the algorithms in Matlab. The results were the following:

Model 6 Original Occupant States 2 Occupant States (Desirable vs. Undesirable)
Training Error / Test Error Training Error / Test Error

Logistic Regression 94.03% / 95.88% 8.19% / 6.19%
Soft-Max Regression 75.00% / 76.29% 8.41% / 6.19%

Discussion

A crucial element of this project was the initial data collection effort, through which we attempted to
create our own correlated database with occupant activity level, mental state and heart rate information
as well as environmental conditions using a variety of sensors. No such database exists currently, that
we are aware of, so we were limited to the data we created ourselves. Given that we had to discard
the smart watch data, we were left with only 646 correlated occupant state - room state data points.
This data proved not to be sufficient for some of the models and algorithms we initially had in mind,
including a Markov Decision Process where we would control the environment conditions to encourage
an improved occupant state, and AR and NAR models for room state prediction using occupant activity
level labels.

Moreover, losing smart watch data, which contained information about the physiological state of the
occupant proved more detrimental to the room state prediction part because the mindwave data only
captures information about the mental state of the occupant which by itself is unlikely to cause a large
impact on the room state. This explains the poor performance of MLR on the correlated occupant state
- room state data.

Besides the limited number of data points, there are two other issues with the data: 1) we only
have data corresponding to the three members of the team, and 2) they were collected while practicing
similar activities. These issues impacted the diversity of the data and promoted a significant skew in the
number of samples for the different occupant states, which in turn limited the learning capability of our
algorithms.

Despite our issues with the dataset, we were still able to clearly distinguish 6 archetypes for occupant
state. In essence, we established that cluster 5 represents the Baseline State, clusters 2 and 6 constitute
the Desirable States, and clusters 3 and 4 constitute the Undesirable States. The rationale behind
this choice, is that a higher value of β is often associated with stress, anxiety and restlessness, whereas a
higher value of δ represents an unconscious mind or a state of deep sleep, which is also undesirable when
in meetings. It is at the α− θ border where the optimal range for visualization, mind programming and
creativity develops, and these are enriched in clusters 2 and 6. Cluster 1 can be considered a Suboptimal
State due to a higher value of αL.
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We used iterated prediction scheme for multiple step ahead prediction in the AR model, where the
predicted output is fed back as input to make multiple predictions into the future. This strategy is
known to lead to suboptimal predictions because the model is trained only to predict one step ahead.
Iterated prediction leads to accumulation of errors. The same holds true for NAR model as well.

In terms of the occupant state prediction, there are some encouraging results in terms of separating
room conditions that lead to a Desirable State from those that lead to Undesirable states, although the
significant skew in the data points clearly influenced the algorithms to better predict Desirable States
than Undesirable States. This exploration must be continued with a larger, more varied dataset that
can provide a better insight into what environmental conditions lead to Desirable mental states.

Conclusion

A better understanding of a building’s internal loads could have a significant impact on the way building
performance is simulated and monitored. We set out to understand the impact that an occupant’s activity
level can have on a room’s environmental conditions which would in turn affect the energy consumption
of the building as the HVAC system reacts to the room’s changes. We also hypothesized that the insights
gained from analyzing the occupant’s impact on the room could perhaps be used reversely - controlling
the room’s environmental conditions in order to influence the occupant’s state.

The first step in our process was the generation of a correlated dataset tracking both the occupant’s
and the room’s states. The occupant’s state was tracked using bio-physiological sensors through the use
of smartwatches and Neurosky Mindwave. The smartwatches purpose was to obtain physiologial data
while the Mindwave headsets gave us insight into the user’s mental state. Regrettably, the smartwatch
data has to be discarded and the subsequent analysis were carried using mind state data and CO2 levels
as a proxy for the activity level. Discarding the smartwatch data also significantly reduced the amount
of correlated datapoints we could use for training and testing our algorithms. Given this, future work
on this area will largely depend on the creation of a large, varied correlated dataset that includes several
users -both their activity level and their mental state-, and longer data collection periods to obtain
sufficient datapoints for adequately training the algorithms.

Despite the limited dataset, we had some encouraging results. First, we were able to cluster the
mental states and classify each cluster as Desirable or Undesirable. Second, when using Multiple Linear
Regression we found that including the activity level proxy improved our prediction of room state changes
over our Baseline. On the other hand, we were limited to an iterated prediction scheme for multiple step
ahead prediction and thus could not get adequate prediction several steps ahead. Another disadvantage
was the inability to positively determine whether it would be possible to predict changes in occupant
state through changes in the environmental conditions of the space they are in.

We believe our methodology is a solid step into better understanding the dynamics between occupants
and spaces and how they impact each other. Replicating this process with a better dataset could provide
invaluable information and can improve the quality of building performance simulation and monitoring.
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Figure 13: AR using (W,C), response variable - T,
RMSE = 0.0905
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Figure 14: AR using (W,C), response variable - H,
RMSE = 0.2769
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Figure 15: One step ahead NAR using (W,C), re-
sponse variable - T, RMSE = 0.3682
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Figure 16: Closed loop NAR using (W,C), response
variable - T, RMSE = 1.4991
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